3.4.41 \(\int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx\) [341]

3.4.41.1 Optimal result
3.4.41.2 Mathematica [C] (verified)
3.4.41.3 Rubi [A] (warning: unable to verify)
3.4.41.4 Maple [B] (verified)
3.4.41.5 Fricas [B] (verification not implemented)
3.4.41.6 Sympy [F]
3.4.41.7 Maxima [F(-2)]
3.4.41.8 Giac [F(-1)]
3.4.41.9 Mupad [B] (verification not implemented)

3.4.41.1 Optimal result

Integrand size = 27, antiderivative size = 408 \[ \int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx=-\frac {b \left (a^2+b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}} d}+\frac {b \left (a^2+b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}} d}-\frac {b \left (a^2+b^2\right ) \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}+\frac {b \left (a^2+b^2\right ) \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}+\frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d} \]

output
-1/2*b*(a^2+b^2)*arctanh(((a+(a^2+b^2)^(1/2))^(1/2)-2^(1/2)*(a+b*tan(d*x+c 
))^(1/2))/(a-(a^2+b^2)^(1/2))^(1/2))/d*2^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)+1 
/2*b*(a^2+b^2)*arctanh(((a+(a^2+b^2)^(1/2))^(1/2)+2^(1/2)*(a+b*tan(d*x+c)) 
^(1/2))/(a-(a^2+b^2)^(1/2))^(1/2))/d*2^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)-1/4 
*b*(a^2+b^2)*ln(a+(a^2+b^2)^(1/2)-2^(1/2)*(a+(a^2+b^2)^(1/2))^(1/2)*(a+b*t 
an(d*x+c))^(1/2)+b*tan(d*x+c))/d*2^(1/2)/(a+(a^2+b^2)^(1/2))^(1/2)+1/4*b*( 
a^2+b^2)*ln(a+(a^2+b^2)^(1/2)+2^(1/2)*(a+(a^2+b^2)^(1/2))^(1/2)*(a+b*tan(d 
*x+c))^(1/2)+b*tan(d*x+c))/d*2^(1/2)/(a+(a^2+b^2)^(1/2))^(1/2)+2/3*b*(a+b* 
tan(d*x+c))^(3/2)/d
 
3.4.41.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.51 (sec) , antiderivative size = 183, normalized size of antiderivative = 0.45 \[ \int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx=\frac {(a-b \tan (c+d x)) \left (3 i \sqrt {a-i b} \left (a^2+b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right ) \cos (c+d x)-3 i \sqrt {a+i b} \left (a^2+b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right ) \cos (c+d x)+2 b (a \cos (c+d x)+b \sin (c+d x)) \sqrt {a+b \tan (c+d x)}\right )}{3 d (a \cos (c+d x)-b \sin (c+d x))} \]

input
Integrate[(-a + b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(3/2),x]
 
output
((a - b*Tan[c + d*x])*((3*I)*Sqrt[a - I*b]*(a^2 + b^2)*ArcTanh[Sqrt[a + b* 
Tan[c + d*x]]/Sqrt[a - I*b]]*Cos[c + d*x] - (3*I)*Sqrt[a + I*b]*(a^2 + b^2 
)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]*Cos[c + d*x] + 2*b*(a*Co 
s[c + d*x] + b*Sin[c + d*x])*Sqrt[a + b*Tan[c + d*x]]))/(3*d*(a*Cos[c + d* 
x] - b*Sin[c + d*x]))
 
3.4.41.3 Rubi [A] (warning: unable to verify)

Time = 0.72 (sec) , antiderivative size = 432, normalized size of antiderivative = 1.06, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.481, Rules used = {3042, 4011, 27, 3042, 3966, 483, 1449, 1142, 25, 27, 1083, 219, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (b \tan (c+d x)-a) (a+b \tan (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (b \tan (c+d x)-a) (a+b \tan (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \left (-a^2-b^2\right ) \sqrt {a+b \tan (c+d x)}dx+\frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\left (a^2+b^2\right ) \int \sqrt {a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\left (a^2+b^2\right ) \int \sqrt {a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 3966

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {b \left (a^2+b^2\right ) \int \frac {\sqrt {a+b \tan (c+d x)}}{\tan ^2(c+d x) b^2+b^2}d(b \tan (c+d x))}{d}\)

\(\Big \downarrow \) 483

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \int \frac {b^2 \tan ^2(c+d x)}{b^4 \tan ^4(c+d x)-2 a b^2 \tan ^2(c+d x)+a^2+b^2}d\sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 1449

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \left (\frac {\int \frac {\sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)-\sqrt {2} b \sqrt {a+\sqrt {a^2+b^2}} \tan (c+d x)+\sqrt {a^2+b^2}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\int \frac {\sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {2} b \sqrt {a+\sqrt {a^2+b^2}} \tan (c+d x)+\sqrt {a^2+b^2}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {1}{2} \int -\frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \left (\frac {-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-b^2 \tan ^2(c+d x)}d\left (2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}\right )-\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-b^2 \tan ^2(c+d x)}d\left (\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+2 \sqrt {a+b \tan (c+d x)}\right )+\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \left (\frac {-\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 b (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 b \left (a^2+b^2\right ) \left (\frac {\frac {1}{2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}+\frac {1}{2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

input
Int[(-a + b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(3/2),x]
 
output
(-2*b*(a^2 + b^2)*((-((Sqrt[a + Sqrt[a^2 + b^2]]*ArcTanh[(-(Sqrt[2]*Sqrt[a 
 + Sqrt[a^2 + b^2]]) + 2*Sqrt[a + b*Tan[c + d*x]])/(Sqrt[2]*Sqrt[a - Sqrt[ 
a^2 + b^2]])])/Sqrt[a - Sqrt[a^2 + b^2]]) + Log[Sqrt[a^2 + b^2] + b^2*Tan[ 
c + d*x]^2 - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]]/2 
)/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]) - ((Sqrt[a + Sqrt[a^2 + b^2]]*ArcT 
anh[(Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]] + 2*Sqrt[a + b*Tan[c + d*x]])/(Sqrt 
[2]*Sqrt[a - Sqrt[a^2 + b^2]])])/Sqrt[a - Sqrt[a^2 + b^2]] + Log[Sqrt[a^2 
+ b^2] + b^2*Tan[c + d*x]^2 + Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b 
*Tan[c + d*x]]]/2)/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]])))/d + (2*b*(a + b 
*Tan[c + d*x])^(3/2))/(3*d)
 

3.4.41.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 483
Int[Sqrt[(c_) + (d_.)*(x_)]/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[2*d 
Subst[Int[x^2/(b*c^2 + a*d^2 - 2*b*c*x^2 + b*x^4), x], x, Sqrt[c + d*x]], x 
] /; FreeQ[{a, b, c, d}, x]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1449
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = 
Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*r)   Int[x^(m - 1)/(q 
 - r*x + x^2), x], x] - Simp[1/(2*c*r)   Int[x^(m - 1)/(q + r*x + x^2), x], 
 x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 1] && LtQ[m, 
3] && NegQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3966
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Su 
bst[Int[(a + x)^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c 
, d, n}, x] && NeQ[a^2 + b^2, 0]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 
3.4.41.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(985\) vs. \(2(333)=666\).

Time = 0.09 (sec) , antiderivative size = 986, normalized size of antiderivative = 2.42

method result size
derivativedivides \(\frac {2 b \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{2}}{4 b d}+\frac {b \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}-\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {b^{3} \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{3}}{4 b d}-\frac {b \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{2}}{4 b d}-\frac {b \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}+\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b^{3} \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{3}}{4 b d}+\frac {b \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d}\) \(986\)
default \(\frac {2 b \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{2}}{4 b d}+\frac {b \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}-\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {b^{3} \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{3}}{4 b d}-\frac {b \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{2}}{4 b d}-\frac {b \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}+\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b^{3} \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{3}}{4 b d}+\frac {b \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d}\) \(986\)
parts \(\text {Expression too large to display}\) \(1656\)

input
int((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
2/3*b*(a+b*tan(d*x+c))^(3/2)/d+1/4/b/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^ 
(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2* 
a)^(1/2)*(a^2+b^2)^(1/2)*a^2+1/4*b/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1 
/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a) 
^(1/2)*(a^2+b^2)^(1/2)-b/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*ta 
n(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/ 
2))*a^2-b^3/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/ 
2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/4/b/d*l 
n(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2 
+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4*b/d*ln(b*tan(d*x+c)+a+( 
a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a 
^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/b/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^ 
(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^( 
1/2)*(a^2+b^2)^(1/2)*a^2-1/4*b/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1 
/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/ 
2)*(a^2+b^2)^(1/2)+b/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^ 
(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))* 
a^2+b^3/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1 
/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/b/d*ln((a 
+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+...
 
3.4.41.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 956 vs. \(2 (335) = 670\).

Time = 0.28 (sec) , antiderivative size = 956, normalized size of antiderivative = 2.34 \[ \int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx=\frac {3 \, d \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} + d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \log \left (d^{3} \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} + d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \sqrt {b \tan \left (d x + c\right ) + a}\right ) - 3 \, d \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} + d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \log \left (-d^{3} \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} + d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \sqrt {b \tan \left (d x + c\right ) + a}\right ) - 3 \, d \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} - d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \log \left (d^{3} \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} - d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \sqrt {b \tan \left (d x + c\right ) + a}\right ) + 3 \, d \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} - d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \log \left (-d^{3} \sqrt {-\frac {a^{5} + 2 \, a^{3} b^{2} + a b^{4} - d^{2} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}}}{d^{2}}} \sqrt {-\frac {a^{8} b^{2} + 4 \, a^{6} b^{4} + 6 \, a^{4} b^{6} + 4 \, a^{2} b^{8} + b^{10}}{d^{4}}} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \sqrt {b \tan \left (d x + c\right ) + a}\right ) + 4 \, {\left (b^{2} \tan \left (d x + c\right ) + a b\right )} \sqrt {b \tan \left (d x + c\right ) + a}}{6 \, d} \]

input
integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")
 
output
1/6*(3*d*sqrt(-(a^5 + 2*a^3*b^2 + a*b^4 + d^2*sqrt(-(a^8*b^2 + 4*a^6*b^4 + 
 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4))/d^2)*log(d^3*sqrt(-(a^5 + 2*a^3*b^2 + 
 a*b^4 + d^2*sqrt(-(a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^ 
4))/d^2)*sqrt(-(a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4) + 
 (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*sqrt(b*tan(d*x + c) + a)) - 3*d*sqr 
t(-(a^5 + 2*a^3*b^2 + a*b^4 + d^2*sqrt(-(a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 
 4*a^2*b^8 + b^10)/d^4))/d^2)*log(-d^3*sqrt(-(a^5 + 2*a^3*b^2 + a*b^4 + d^ 
2*sqrt(-(a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4))/d^2)*sq 
rt(-(a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4) + (a^6*b + 3 
*a^4*b^3 + 3*a^2*b^5 + b^7)*sqrt(b*tan(d*x + c) + a)) - 3*d*sqrt(-(a^5 + 2 
*a^3*b^2 + a*b^4 - d^2*sqrt(-(a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 
+ b^10)/d^4))/d^2)*log(d^3*sqrt(-(a^5 + 2*a^3*b^2 + a*b^4 - d^2*sqrt(-(a^8 
*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4))/d^2)*sqrt(-(a^8*b^2 
 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4) + (a^6*b + 3*a^4*b^3 + 3 
*a^2*b^5 + b^7)*sqrt(b*tan(d*x + c) + a)) + 3*d*sqrt(-(a^5 + 2*a^3*b^2 + a 
*b^4 - d^2*sqrt(-(a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4) 
)/d^2)*log(-d^3*sqrt(-(a^5 + 2*a^3*b^2 + a*b^4 - d^2*sqrt(-(a^8*b^2 + 4*a^ 
6*b^4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4))/d^2)*sqrt(-(a^8*b^2 + 4*a^6*b^ 
4 + 6*a^4*b^6 + 4*a^2*b^8 + b^10)/d^4) + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + 
b^7)*sqrt(b*tan(d*x + c) + a)) + 4*(b^2*tan(d*x + c) + a*b)*sqrt(b*tan(...
 
3.4.41.6 Sympy [F]

\[ \int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx=- \int a^{2} \sqrt {a + b \tan {\left (c + d x \right )}}\, dx - \int \left (- b^{2} \sqrt {a + b \tan {\left (c + d x \right )}} \tan ^{2}{\left (c + d x \right )}\right )\, dx \]

input
integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))**(3/2),x)
 
output
-Integral(a**2*sqrt(a + b*tan(c + d*x)), x) - Integral(-b**2*sqrt(a + b*ta 
n(c + d*x))*tan(c + d*x)**2, x)
 
3.4.41.7 Maxima [F(-2)]

Exception generated. \[ \int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(b-a>0)', see `assume?` for more 
details)Is
 
3.4.41.8 Giac [F(-1)]

Timed out. \[ \int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.4.41.9 Mupad [B] (verification not implemented)

Time = 19.90 (sec) , antiderivative size = 2529, normalized size of antiderivative = 6.20 \[ \int (-a+b \tan (c+d x)) (a+b \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \]

input
int(-(a + b*tan(c + d*x))^(3/2)*(a - b*tan(c + d*x)),x)
 
output
log((((16*b^4*(a + b*tan(c + d*x))^(1/2)*(a^4 + b^4 - 6*a^2*b^2))/d^2 + (1 
6*a*b^2*(((-b^6*d^4*(3*a^2 - b^2)^2)^(1/2) - 3*a*b^4*d^2 + a^3*b^2*d^2)/d^ 
4)^(1/2)*(a^2*b + b^3 - d*(((-b^6*d^4*(3*a^2 - b^2)^2)^(1/2) - 3*a*b^4*d^2 
 + a^3*b^2*d^2)/d^4)^(1/2)*(a + b*tan(c + d*x))^(1/2)))/d)*(((-b^6*d^4*(3* 
a^2 - b^2)^2)^(1/2) - 3*a*b^4*d^2 + a^3*b^2*d^2)/d^4)^(1/2))/2 - (8*b^5*(a 
^2 - b^2)*(a^2 + b^2)^2)/d^3)*((6*a^2*b^8*d^4 - b^10*d^4 - 9*a^4*b^6*d^4)^ 
(1/2)/(4*d^4) - (3*a*b^4)/(4*d^2) + (a^3*b^2)/(4*d^2))^(1/2) - log(- (((16 
*b^4*(a + b*tan(c + d*x))^(1/2)*(a^4 + b^4 - 6*a^2*b^2))/d^2 - (16*a*b^2*( 
-((-b^6*d^4*(3*a^2 - b^2)^2)^(1/2) + 3*a*b^4*d^2 - a^3*b^2*d^2)/d^4)^(1/2) 
*(a^2*b + b^3 + d*(-((-b^6*d^4*(3*a^2 - b^2)^2)^(1/2) + 3*a*b^4*d^2 - a^3* 
b^2*d^2)/d^4)^(1/2)*(a + b*tan(c + d*x))^(1/2)))/d)*(-((-b^6*d^4*(3*a^2 - 
b^2)^2)^(1/2) + 3*a*b^4*d^2 - a^3*b^2*d^2)/d^4)^(1/2))/2 - (8*b^5*(a^2 - b 
^2)*(a^2 + b^2)^2)/d^3)*(-((6*a^2*b^8*d^4 - b^10*d^4 - 9*a^4*b^6*d^4)^(1/2 
) + 3*a*b^4*d^2 - a^3*b^2*d^2)/(4*d^4))^(1/2) - log(- (((16*b^4*(a + b*tan 
(c + d*x))^(1/2)*(a^4 + b^4 - 6*a^2*b^2))/d^2 - (16*a*b^2*(((-b^6*d^4*(3*a 
^2 - b^2)^2)^(1/2) - 3*a*b^4*d^2 + a^3*b^2*d^2)/d^4)^(1/2)*(a^2*b + b^3 + 
d*(((-b^6*d^4*(3*a^2 - b^2)^2)^(1/2) - 3*a*b^4*d^2 + a^3*b^2*d^2)/d^4)^(1/ 
2)*(a + b*tan(c + d*x))^(1/2)))/d)*(((-b^6*d^4*(3*a^2 - b^2)^2)^(1/2) - 3* 
a*b^4*d^2 + a^3*b^2*d^2)/d^4)^(1/2))/2 - (8*b^5*(a^2 - b^2)*(a^2 + b^2)^2) 
/d^3)*(((6*a^2*b^8*d^4 - b^10*d^4 - 9*a^4*b^6*d^4)^(1/2) - 3*a*b^4*d^2 ...